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Abstract 
With the Connected Car becoming commonplace in the market, vehicle 

cybersecurity grows more important by the year. At the forefront of this growing area 

of security research, IOActive has amassed real-world vulnerability data illustrating 

the general issues and potential solutions to the cybersecurity issues facing today’s 

vehicles. 

This paper explains the differences in testing methodologies, with recommendations 

on the most appropriate methods for testing connected vehicle systems. Detailed 

findings follow, including the impact, likelihood, overall risk, and remediation of 

vulnerabilities IOActive consultants have discovered over the course of thousands of 

testing hours. The paper concludes with a recommendation for an “ounce of 

prevention” that may ensure more secure vehicle systems in the future.  
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Introduction 
This paper provides a metadata analysis of the multitude of private vehicle security 

assessments IOActive has conducted, also incorporating other publicly available 

research to provide an informative picture of the vulnerabilities that researchers are 

uncovering, the specific systems and attack vectors most prevalently affected, and the 

real-world significance of these vulnerabilities. This data is extremely useful for 

organizations considering cybersecurity strategy and planning. 

Vehicle cybersecurity has become a focused and growing area of security research 

for IOActive. In 2013, the company conducted about 2,000 hours of combined 

research and services in the vehicle cybersecurity space, doubling to 4,000 in 2014 

and spiking to 10,000 hours in 2015, and we anticipate that number continuing to grow 

going forward.  

This experience puts IOActive’s Vehicle Cybersecurity Division in a unique position to 

provide valuable insight into common struggles, failures, and solutions facing the 

automotive and related transportation and components industries. This research uses 

hard data taken from vulnerability assessments of real-world vehicle systems. We 

have conducted enough of these assessments to properly anonymize the sources of 

this information and extract the valuable “big-picture” aspects. 

First, in order to make use of the data we must establish a foundation of cybersecurity 

terminology and comprehension. We will discuss threat modeling, attack vectors, and 

attacker methodologies in order to explain how we discovered these vulnerabilities. 

Second, we will cover categorization and walk through a vulnerability evaluation. 

Finally, we will look at the data itself and answer some key questions: 

 What kind of vulnerabilities most commonly affect the Connected Car? 

 What attack vectors are most commonly used to compromise a vehicle? 

 What percentage of vulnerabilities would defense product XYZ mitigate? 

 How do automotive and component manufacturers best manage their limited 
cybersecurity resources to maximize effectiveness? 

Threat Modeling the Connected Car 
Understanding the attack surfaces of the connected car is an important first step. This 

means noting the possible ways to attack a target, which might be the entire vehicle or 

just a component therein. A threat model does not focus on attack methods, but rather 

looks at possible attack vectors. 

Holistic Model 
For a holistic threat model of the Connected Car, we are interested in looking at how 

data can enter the vehicle, and what the potential impact to the vehicle is if a given 

vulnerability is exploited. These boundaries are where an attacker will focus their 

efforts, and therefore where defense efforts should be prioritized. 
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Data can enter vehicles in a variety of ways, including: 

 Cellular Radio  V2V Radio (802.11p) 

 Bluetooth  OBDII 

 Wi-Fi  Infotainment Media 

 Companion Apps  Zigbee Radio (e.g. TPMS) 

Component Model 
Threat modeling is also quite effective at the system or component level. For example, 

a threat model of an infotainment unit will include inputs from any media inserted, 

such as Bluetooth pairing with smartphones, physical media access via USB, and 

possibly cellular data communications. The threat model aids in organizing the overall 

development effort. For example, time spent searching an entire code base for buffer 

overflow vulnerabilities may not be as effective as focusing on code that interacts with 

higher-risk attack vectors, such as Wi-Fi. 

Test Methodologies 
Cybersecurity researchers will vary their testing methodologies depending on the 

component being analyzed, but most testing falls under two categories: black box and 

white box. 

Black box testing is so named because the researcher is given no foreknowledge or 

insight into how a system operates. The researcher takes the role of an attacker who 

must evaluate the system, discover how it works, and attempt to find and exploit 

vulnerabilities. This usually involves dynamic testing utilizing protocol fuzzing, 

hardware analysis, chip desoldering, observation of serial bus lines, capturing 

firmware updates, and other methods. 

White box (which is often actually grey box - somewhere in between true black box 

and white box) testing is so named because the researcher works with the product 

developer to evaluate the system. The developer will often provide code or a debug 

testing harness. The methods and “attacker mindset” approach used in white/grey box 

testing by IOActive are similar to black box testing, but may also include code 

analysis, protocol specifications, and design review. 

In general, white box testing has provided the best ROI to clients and most of the 

useful data for this paper. This is because greater insight into a system makes for 

more meaningful bug reports and more accurate assessments of impact that can be 

better aligned to the specific business risks of the client.  

Categorizing Vulnerabilities 
To provide a meaningful, quantitative analysis of its findings, IOActive uses an impact-

versus-likelihood approach to scoring. For each individual finding, the assessment 

team assigns two ratings, one for impact and another for likelihood; that is, the 

likelihood the given vulnerability will be exploited. Each vulnerability is then assigned a 

rating of Critical, High, Medium, Low, or Informational, with corresponding numeric 
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scores ranging from 5 (Critical) to 1 (Informational). This table explains each rating in 

terms of score, impact, and likelihood. 

Rating (Score) Impact Likelihood 

Critical (5) 

Extreme impact to vehicle if 

exploited.  

Would receive media attention. 

Vulnerability is almost certain to 

be exploited.  

Knowledge of the vulnerability and 

its exploitation are in the public 

domain. 

High (4) 

Major impact to vehicle if 

exploited. 

Could be a regulatory violation. 

Vulnerability is relatively easy to 

detect and exploit by an attacker 

with little skill. 

Medium (3) 
Noticeable impact to vehicle if 

exploited. 

An expert attacker could exploit 

the vulnerability without much 

difficulty. 

Low (2) 

Minor impact if exploited, or 

could be used in conjunction 

with other vulnerabilities to 

perform a more serious attack. 

Exploiting the vulnerability would 

require considerable expertise 

and resources. 

Informational (1) 

Poor programming practice or 

poor design decision that may 

not represent an immediate risk 

on its own, but may have 

security implications if multiplied 

and/or combined with other 

vulnerabilities. 

Vulnerability is not likely to be 

exploited on its own, but may be 

used to gain information for 

launching another attack. 

Table 1 – Vulnerability rating system 

IOActive assigns aggregate risk scores to identified vulnerabilities; specifically, the 

impact score multiplied by the likelihood score. For example, a vulnerability with high 

likelihood and low impact would have an aggregate risk score of eight (8); that is, four 

(4) for high likelihood multiplied by two (2) for low impact. The Aggregate Risk Score 

determines the finding's Overall Risk Level. 

Overall Risk Level 
Aggregate Risk Score 

(Impact multiplied by Likelihood) 

Critical 20–25 

High 12–19 

Medium  6–11 

Low  2–5 

Informational  1 

Table 2 - Overall Risk Levels and corresponding Aggregate Risk Scores 

The Common Vulnerability Scoring System (CVSS) has proven effective for other 

organizations, but experience has taught us that a simpler and more relatable scoring 
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metric facilitates better understanding of overall vulnerability. CVSS does have scoring 

parameters that are useful for the type of meta-analysis performed for this paper, but 

the research goes beyond CVSS parameters to evaluate other aspects of a 

vulnerability. 

In order to further categorize vulnerabilities in a meaningful way, IOActive collected 

additional data for each vulnerability finding. For instance, testers gathered data 

relating a vulnerability to a particular attack vector, a given methodology, or type (e.g., 

buffer overflow, authentication issue, etc.). 

Example Categorization 
A recent high-profile example1 effectively illustrates how a vulnerability is evaluated. A 

vehicle manufacturer released a companion smartphone app to interface with the 

vehicle, enabling users to control climate settings and view fuel status, among a 

myriad of other capabilities. The application itself requested association with a user 

account, requiring the user to log in before using the app. 

This example vulnerability shows that HTTPS requests made to the backend servers 

from the app did not contain any user authentication information. The application 

made a request to get battery status (example, fictitious URL): 

GET https://host/BatteryStatus.php?VIN=JNFAAZE0U60XXXXX 

This request did not contain any session parameters or use Authentication Headers. 

The server returns a JSON response. By changing the VIN, an attacker can gain 

access to information about any vehicle that sends data to the backend servers, 

without authentication. 

Further, using the app to turn climate control on and off issues requests with similar 

parameters to the URLs: 

/orchestration_example/ACRemoteRequest.php?XXX 
/orchestration_example/ACRemoteOffRequest.php?XXX 

We are looking at a vulnerability that is remote, unauthenticated, low-skill, capable of 

controlling or changing a process or system, and automatable. 

                                                      

 

1 https://www.troyhunt.com/controlling-vehicle-features-of-nissan/ 

https://host/BatteryStatus.php?VIN=JNFAAZE0U60XXXXX
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 CATEGORY  VALUE 

 IMPACT  Critical (4.5). Media attention. API servers can affect all 
vehicles. 

 LIKELIHOOD  Critical (5). Almost certain to be exploited. Very low skill 
required. Easily discoverable. 

 ACCESS VECTOR  Network 

 ACCESS 
COMPLEXITY 

 Low 

 AUTHENTICATION  None 

 IMPACT: 
CONFIDENTIALITY 

 Complete 

 IMPACT: 
INTEGRITY 

 Partial 

 IMPACT: 
AVAILABILITY 

 None 

 LABELS  Telematics, Web API, App, Insecure By Design 

 EXPLOIT 
DELIVERY MEDIA 

 Web 

 TOOLS USED  burp 

 VULNERABILITY  Unauthenticated API 

 IMPACT: VEHICLE  Secondary system loss of control, multiple vehicles 
compromised 

 TESTING METHOD  Black Box 

 TEMPORARY 
REMEDIATION 

 Easy (0). Disable API immediately. 

 REMEDIATION: 
DISSEMINATION 

 Medium (3). Prod server update to remediate the issue but 
a new app required to use new server API. 

 REMEDIATION: 
COMPLEXITY 

 Medium (3). Proper security of web API requires 
authentication/session information and CSRF tokens (if a 
web interface exists). 

 REMEDIATION: 
TIMELINE 

 Medium (3) 

 EXPLOIT 
AUTOMATABILITY 

 Easy (5) 

Table 3 – Vulnerability report table 
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Common Vulnerabilities and Analysis 
With this understanding of how we find and classify vulnerabilities we can look at the 

raw data. We evaluate the data organized by: 

 Type 

 Severity 

 Attack Vector 

 Methodology 

 Remediation Difficulty 

 Vehicle Impact 

Impact 
Looking at the impact level across all vulnerabilities, we see that half are Critical or 

High impact. This means half of the vulnerabilities result in a compromise of 

components, communications, or data that causes complete or partial loss of control 

over the system. Business impact, such as regulatory violation fees or negative media 

attention, is also factored into the generic Impact score. 

 

Figure 1 - Vulnerabilities by Impact 

Likelihood 
The second generic vulnerability category is Likelihood. Here we see the largest 

classification is Medium, meaning “an expert attacker could exploit the vulnerability 

without much difficulty.” The nature of embedded systems security causes a barrier to 

entry for attackers. The customized nature of each system makes developing attack 

tools difficult. However, in time, more vulnerabilities will shift toward the Critical value 

as more vehicle tools are released to the public and embedded security becomes 

more accessible to a would-be attacker. 

Critical
25%

High
25%Informational

14%

Low
13%

Medium
23%
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Figure 2 - Vulnerabilities by Likelihood 

Overall Risk Level 
Combining the previous two data segments gives us an Overall Risk Level, a general 

quick look at vulnerability severity. 22% of all vulnerabilities sit in the Critical range. 

These are the high-priority "hair on fire" vulnerabilities that are easily discovered and 

exploited and can cause major impacts to the system or component. These 

vulnerabilities should drive cybersecurity resource allocation and spending. 

 

Figure 3 - Vulnerabilities by Overall Risk Level 

Attack Vector 
The Attack Vector is a useful data set to compare against the threat model for a given 

component or system. The attack surface and trust boundaries should be considered 

during the design phase of a system. Every decision that increases the attack surface 
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21%
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15%

Low
14%
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36%
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provides new opportunities for an attacker, and should be evaluated accordingly for 

risk. 

 

Figure 4 - Vulnerability Attack Vectors 

Within our vulnerability set, 39% of vulnerabilities are related to the network. This is a 

general category that includes all network traffic, such as Ethernet or web. However, 

cellular network and CANBus vulnerabilities appear in separate categories, 

representing 16% and 10% (respectively) of the attack vectors for vulnerabilities 

found. 

The local attack vector requires an attacker to be on the system and obtain privilege 

escalation. At first this may seem like an inconsequential or unlikely attack vector, but 

after considering the availability of app stores and third-party software modules, this 

attack vector is just as significant as network-based attacks. 

USB and serial attack vectors require an attacker to be physically present at the 

system or otherwise chain an attack. For example, malware on a desktop system may 

deploy a payload to a USB storage device, which the unsuspecting user then delivers 

to the vehicle. These attack vectors generally coincide with a lower likelihood of 

vulnerability. 

Top Eight Vulnerabilities 
Vulnerabilities related to system design occupy four of the top eight vulnerability types. 

Vendor-introduced backdoors, incorrect utilization of the principle of least privilege, 

authentication systems requiring hardcoded credentials, and accidental information 

disclosure are all products of the system design process. 
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Figure 5 – Top Eight Vulnerabilities 

Engineering problems are the root cause of three of the top eight vulnerability types. 

Coding logic errors, such as format strings, buffer overflows, and integer overflows, 

account for the most vulnerabilities, with buffer overflows the most common sub-type. 

Additionally, web vulnerability implementation problems fall under this category, which 

are generally High to Critical risk due to widely available attacker tools and knowledge 

base. 

Problems in deployment mechanisms and testing cause vulnerabilities in the 

Vulnerable Dependency and Backdoor categories. The Vulnerable Dependency 

category stems from technical and cultural issues. It is extremely common for 

embedded systems to use outdated libraries simply because it is hard enough to get a 

system to work in the first place, let alone introduce changes that could cause further 

issues by updating a dependency. Further, updating embedded systems is non-trivial, 

so a discovered vulnerability in one of these dependencies is likely to be a fruitful 

vector for attackers for much longer than in the general realm of IT systems. 

Backdoors, information disclosure, and hardcoded credentials also stem from issues 

in the deployment process. Production systems should not include developer debug 

interfaces or other information that enables attackers. Security-aware deployment 

procedures and testing are necessary to verify removal of these interfaces from 

production systems. 
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Critical Impact Remediation 
To create this chart, we took all vulnerabilities with a Critical impact score and made a 

"remediation complexity" estimate to evaluate the difficulty of fixing a specific 

vulnerability. For example, patching code to remove a buffer overflow is relatively 

easy. Interestingly, an overwhelming majority of Critical impact vulnerabilities can be 

remediated with relatively simple fixes. 

 

Figure 6 - Critical Vulnerability Remediation Difficulty 

However, vulnerabilities stemming from design-level issues occupy the Medium and 

High remediation complexity categories. These can be extremely difficult, if not 

impossible, to remediate after the design phase, which results in a system that is 

"insecure by design" and can never really be remediated. Some design issues do fall 

in the Low category as a result of not following industry best practices that are widely 

published with how-to guides (e.g., the use of CSRF tokens to prevent web application 

CSRF attacks). 

Testing Method 
The Testing Method chart below is useful when considering how to proceed with a 

vulnerability assessment. It includes normalized data on Overall Risk Level for 

vulnerabilities, broken down by the testing method used when the vulnerabilities were 

discovered. IOActive generally conducts assessments in a black or white box format 

wherein the client will either share (white box) or not share (black box) data, code, or 

other information.  

The usual motivation for a black box test is to evaluate what a "real-world attacker" 

would see or do, but in reality the assessment rarely plays out as intended. Real 

attackers are not limited in scope or timeline when attacking a system. During such an 

assessment, more time is required by researchers to discover and evaluate how to 

use a system and develop the harnesses or methodologies required for testing. This 

limits the time remaining for the testing itself. 

High
8%

Low
77%

Medium
15%
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Conversely, in a white box test, researchers have more information about the system, 

giving them three advantages:  

1. Researchers can spend less time figuring out how a system works and 

more time discovering vulnerabilities.  

2. Researchers are better able to evaluate the impact and likelihood levels for 

any vulnerabilities that are discovered.  

3. Researchers can provide insight and assistance in areas of the system that 

may not be directly attackable but might be accessible in the future or by 

chaining another vulnerability. Generally, these insights fall into the 

Informational Overall Risk Level. 

 

Figure 7 - Testing Method 

In black box testing, most vulnerabilities sit at the Medium Overall Risk Level, and 

fewer vulnerabilities are discovered overall. Comparatively, white box testing uncovers 

fewer Medium and more Critical and Informational vulnerabilities. The additional 

information available in white box testing enables researchers to better assess the 

actual risk of a vulnerability. Further, researchers spend less time working to discover 

information about the system and how it operates and more time focusing on finding 

and evaluating vulnerabilities. 

Grey box testing can be similar in methodology to black box, but benefits from the 

addition of information that enables testers to focus on critical attack paths or 

components, often resulting in the discovery of more Critical or High Overall Risk 

Level vulnerabilities. However, this also results in fewer Informational level 

vulnerabilities than a white box test, often limiting the additional insights, such as 

incorporating industry best practices, that white box testing can offer. 
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In summary: white box testing is the most effective at identifying high priority bugs and 

improving the development process. 

Impact on Vehicle 
 

 

Figure 8 - Impact on Vehicle 

An important point to consider when reviewing this vulnerability data is the actual 

impact on the vehicle or fleet. Starting from the benign, 17% of vulnerabilities 

evaluated had zero impact on the vehicle itself. These might be vulnerabilities in 

unrelated backend systems or other components that are tangentially connected to 

the vehicle system being evaluated. 

Attacker-enabling impact (9%) encompasses those vulnerabilities that provide 

attackers with additional information or attack chains they can use to gain access or 

target another vulnerability. Similarly, indirect impact is a secondary consequence of 

an attack against a vehicle. For example, compromise of a telematics backend might 

allow an attacker to then communicate with the vehicle and gain an additional direct 

attack vector against the vehicle. 

Vehicle telematics communications are effected in 24% of vulnerabilities. This might 

occur directly on the component, in transit over a cellular or other network, or on the 

backend systems that gather and utilize the data. 
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More significantly, 27% of vulnerabilities can be used to gain CANBus Access. This is 

important when considering the increasing body of public research showing that an 

attacker on the CANBus can control the vehicle234. 

Actual ECU control is gained in 8% of the vulnerabilities IOActive evaluated, while 1% 

of vulnerabilities disable the ECU without gaining actual control. Compromised ECUs 

may allow the attacker to control all of their normal functionality, add further 

functionality, or otherwise result in complete compromise of the vehicle component in 

a manner that may be extremely difficult to detect. 

Defenses and Effectiveness 
As part of the assessment process, IOActive provides recommendations to the 

customer for vulnerability remediation. This might include re-working of code, 

replacement or removal of a feature or component, the purchase and implementation 

of a defensive tool or product, or other techniques depending on the nature and 

impact of the vulnerability. 

In the assessments analyzed for this research, no defensive products were tested. 

This is likely a result of the relative infancy of automotive cybersecurity products, as 

well as a general tendency of defensive cybersecurity products to not undergo third-

party testing. Organizations can improve this deficiency by including testing 

requirements in any procurement language for such products. This has become 

commonplace in other industries, such as the Industrial Control System space, where 

manufacturers must deliver security reports alongside products that are to be 

integrated into production systems. 

Ounce of Prevention 
In conducting this research, we evaluated an "Ounce of Prevention" measure to best 

determine what techniques, policies, or methodologies might have prevented a 

vulnerability from existing in the first place.  

Disclaimer: while this aspect of the report was a collaborative effort involving opinions 

of multiple researchers, and the results are subjective. 

                                                      

 

2 http://www.ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf 
3 http://opengarages.org/handbook/2014_car_hackers_handbook_compressed.pdf 
4 https://www.sans.org/reading-room/whitepapers/internet/developments-car-hacking-36607 
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Figure 9 - An "Ounce of Prevention" Analysis 

The largest category in our analysis is Industry Best Practices. An increasing number 

of security best practices publications are made available every year. The Auto-

ISAC56, Microsoft, OWASP, ARM, and others publish best-practice documents to help 

software and hardware developers to create secure systems. Utilizing this information 

could result in up to a 45% decrease in vulnerabilities across the board. 

Authentication design may fall under industry best practices, but becomes its own 

category due to its prevalence and the more unique nature of some of the 

components evaluated. Authentication mechanisms may be difficult to change after a 

system is deployed and thus should be thoroughly evaluated during system design. 

Similarly, secure coding practices could help to prevent 11% of vulnerabilities. Simple 

steps, such as including Microsoft’s “banned.h“ to avoid using insecure coding 

patterns like strcpy(), help to improve overall code security (and consequently overall 

quality) of any system. 

The most difficult category to judge with certainty is Code Review and Testing. 

Catching coding logic errors can be extremely difficult, but following modern software 

                                                      

 

5 http://www.prnewswire.com/news-releases/automotive-industry-collaborates-in-developing-vehicle-
cybersecurity-best-practices-to-address-cybersecurity-challenges-300301805.html 
6 http://www.autoalliance.org/index.cfm?objectid=1E518FB0-BEC3-11E5-9500000C296BA163 
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development principles such as test-driven development can do wonders for 

improving a code base and hardening against unexpected behavior and bugs. 

A smaller number of issues stem from poor deployment procedures or patch 

management. Shipping a production system with enabled backdoors (a.k.a. "debug 

features") is preventable with a proper deployment procedure and verification. 

Similarly, shipping products with vulnerable dependencies or a difficult update 

mechanism further increases the risk for attack. 

In evaluating the past few years of vulnerabilities, the old adage rings truer than ever: 

an ounce of prevention is worth a pound of cure. Incorporating industry best practices 

and a secure development lifecycle is crucial to avoiding pitfalls that, frankly, have 

been a non-issue in other industries for years. Using modern design principles 

improves the ability to patch and maintain a codebase, and improves overall code 

quality. 

Conclusion 
The majority of vehicle cybersecurity vulnerabilities are not solvable using “bolt-on” 

solutions, instead relying on sound engineering, software development practices, and 

cybersecurity best practices. The most effective cybersecurity work occurs during the 

planning, design and early implementation phases of products, with the difficulty and 

cost of remediation increasing in correlation with product age and complexity. 

Future Work 
Emerging vehicle technologies, such as V2V and V2I communication components, are 

underrepresented in the data thus far. These emerging technologies typically require 

self-funded research, and thus are rarely published. 

Similarly, the data set does not contain any defensive tools or products. It would be 

interesting to perform a similar analysis on the defensive tools present in the current 

vehicle cybersecurity market. Adding additional components to the system, even if 

they are designed to improve security, always adds complexity, introducing new attack 

vectors and possibly new vulnerabilities. In the future we should evaluate these 

systems on their own cybersecurity merit, and add their vulnerabilities to this research. 

For more information on IOActive Transportation Security research and services, 

please visit http://www.ioactive.com/services/air-auto-rail-satcom-ship-transportation-

security.html or contact IOActive at info@ioactive.com. 
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