
TECHNICAL WHITE PAPER – Advance Copy

© 2016 IOActive, Inc. All Rights Reserved

Commonalities in
Vehicle Vulnerabilities

Corey Thuen
Senior Security Consultant

IOActive

Abstract
With the Connected Car becoming commonplace in the market, vehicle

cybersecurity grows more important by the year. At the forefront of this growing area

of security research, IOActive has amassed real-world vulnerability data illustrating

the general issues and potential solutions to the cybersecurity issues facing today’s

vehicles.

This paper explains the differences in testing methodologies, with recommendations

on the most appropriate methods for testing connected vehicle systems. Detailed

findings follow, including the impact, likelihood, overall risk, and remediation of

vulnerabilities IOActive consultants have discovered over the course of thousands of

testing hours. The paper concludes with a recommendation for an “ounce of

prevention” that may ensure more secure vehicle systems in the future.

© 2016 IOActive, Inc. All Rights Reserved [2]

Contents

Abstract.. 1

Introduction .. 3

Threat Modeling the Connected Car .. 3

Holistic Model ... 3

Component Model .. 4

Test Methodologies .. 4

Categorizing Vulnerabilities .. 4

Example Categorization .. 6

Common Vulnerabilities and Analysis .. 8

Impact ... 8

Likelihood ... 8

Overall Risk Level ... 9

Attack Vector .. 9

Top Eight Vulnerabilities ..10

Critical Impact Remediation ...12

Testing Method ..12

Impact on Vehicle ..14

Defenses and Effectiveness ..15

Ounce of Prevention ..15

Conclusion ..17

Future Work ..17

© 2016 IOActive, Inc. All Rights Reserved [3]

Introduction
This paper provides a metadata analysis of the multitude of private vehicle security

assessments IOActive has conducted, also incorporating other publicly available

research to provide an informative picture of the vulnerabilities that researchers are

uncovering, the specific systems and attack vectors most prevalently affected, and the

real-world significance of these vulnerabilities. This data is extremely useful for

organizations considering cybersecurity strategy and planning.

Vehicle cybersecurity has become a focused and growing area of security research

for IOActive. In 2013, the company conducted about 2,000 hours of combined

research and services in the vehicle cybersecurity space, doubling to 4,000 in 2014

and spiking to 10,000 hours in 2015, and we anticipate that number continuing to grow

going forward.

This experience puts IOActive’s Vehicle Cybersecurity Division in a unique position to

provide valuable insight into common struggles, failures, and solutions facing the

automotive and related transportation and components industries. This research uses

hard data taken from vulnerability assessments of real-world vehicle systems. We

have conducted enough of these assessments to properly anonymize the sources of

this information and extract the valuable “big-picture” aspects.

First, in order to make use of the data we must establish a foundation of cybersecurity

terminology and comprehension. We will discuss threat modeling, attack vectors, and

attacker methodologies in order to explain how we discovered these vulnerabilities.

Second, we will cover categorization and walk through a vulnerability evaluation.

Finally, we will look at the data itself and answer some key questions:

 What kind of vulnerabilities most commonly affect the Connected Car?

 What attack vectors are most commonly used to compromise a vehicle?

 What percentage of vulnerabilities would defense product XYZ mitigate?

 How do automotive and component manufacturers best manage their limited
cybersecurity resources to maximize effectiveness?

Threat Modeling the Connected Car
Understanding the attack surfaces of the connected car is an important first step. This

means noting the possible ways to attack a target, which might be the entire vehicle or

just a component therein. A threat model does not focus on attack methods, but rather

looks at possible attack vectors.

Holistic Model
For a holistic threat model of the Connected Car, we are interested in looking at how

data can enter the vehicle, and what the potential impact to the vehicle is if a given

vulnerability is exploited. These boundaries are where an attacker will focus their

efforts, and therefore where defense efforts should be prioritized.

© 2016 IOActive, Inc. All Rights Reserved [4]

Data can enter vehicles in a variety of ways, including:

 Cellular Radio V2V Radio (802.11p)

 Bluetooth OBDII

 Wi-Fi Infotainment Media

 Companion Apps Zigbee Radio (e.g. TPMS)

Component Model
Threat modeling is also quite effective at the system or component level. For example,

a threat model of an infotainment unit will include inputs from any media inserted,

such as Bluetooth pairing with smartphones, physical media access via USB, and

possibly cellular data communications. The threat model aids in organizing the overall

development effort. For example, time spent searching an entire code base for buffer

overflow vulnerabilities may not be as effective as focusing on code that interacts with

higher-risk attack vectors, such as Wi-Fi.

Test Methodologies
Cybersecurity researchers will vary their testing methodologies depending on the

component being analyzed, but most testing falls under two categories: black box and

white box.

Black box testing is so named because the researcher is given no foreknowledge or

insight into how a system operates. The researcher takes the role of an attacker who

must evaluate the system, discover how it works, and attempt to find and exploit

vulnerabilities. This usually involves dynamic testing utilizing protocol fuzzing,

hardware analysis, chip desoldering, observation of serial bus lines, capturing

firmware updates, and other methods.

White box (which is often actually grey box - somewhere in between true black box

and white box) testing is so named because the researcher works with the product

developer to evaluate the system. The developer will often provide code or a debug

testing harness. The methods and “attacker mindset” approach used in white/grey box

testing by IOActive are similar to black box testing, but may also include code

analysis, protocol specifications, and design review.

In general, white box testing has provided the best ROI to clients and most of the

useful data for this paper. This is because greater insight into a system makes for

more meaningful bug reports and more accurate assessments of impact that can be

better aligned to the specific business risks of the client.

Categorizing Vulnerabilities
To provide a meaningful, quantitative analysis of its findings, IOActive uses an impact-

versus-likelihood approach to scoring. For each individual finding, the assessment

team assigns two ratings, one for impact and another for likelihood; that is, the

likelihood the given vulnerability will be exploited. Each vulnerability is then assigned a

rating of Critical, High, Medium, Low, or Informational, with corresponding numeric

© 2016 IOActive, Inc. All Rights Reserved [5]

scores ranging from 5 (Critical) to 1 (Informational). This table explains each rating in

terms of score, impact, and likelihood.

Rating (Score) Impact Likelihood

Critical (5)

Extreme impact to vehicle if

exploited.

Would receive media attention.

Vulnerability is almost certain to

be exploited.

Knowledge of the vulnerability and

its exploitation are in the public

domain.

High (4)

Major impact to vehicle if

exploited.

Could be a regulatory violation.

Vulnerability is relatively easy to

detect and exploit by an attacker

with little skill.

Medium (3)
Noticeable impact to vehicle if

exploited.

An expert attacker could exploit

the vulnerability without much

difficulty.

Low (2)

Minor impact if exploited, or

could be used in conjunction

with other vulnerabilities to

perform a more serious attack.

Exploiting the vulnerability would

require considerable expertise

and resources.

Informational (1)

Poor programming practice or

poor design decision that may

not represent an immediate risk

on its own, but may have

security implications if multiplied

and/or combined with other

vulnerabilities.

Vulnerability is not likely to be

exploited on its own, but may be

used to gain information for

launching another attack.

Table 1 – Vulnerability rating system

IOActive assigns aggregate risk scores to identified vulnerabilities; specifically, the

impact score multiplied by the likelihood score. For example, a vulnerability with high

likelihood and low impact would have an aggregate risk score of eight (8); that is, four

(4) for high likelihood multiplied by two (2) for low impact. The Aggregate Risk Score

determines the finding's Overall Risk Level.

Overall Risk Level
Aggregate Risk Score

(Impact multiplied by Likelihood)

Critical 20–25

High 12–19

Medium 6–11

Low 2–5

Informational 1

Table 2 - Overall Risk Levels and corresponding Aggregate Risk Scores

The Common Vulnerability Scoring System (CVSS) has proven effective for other

organizations, but experience has taught us that a simpler and more relatable scoring

© 2016 IOActive, Inc. All Rights Reserved [6]

metric facilitates better understanding of overall vulnerability. CVSS does have scoring

parameters that are useful for the type of meta-analysis performed for this paper, but

the research goes beyond CVSS parameters to evaluate other aspects of a

vulnerability.

In order to further categorize vulnerabilities in a meaningful way, IOActive collected

additional data for each vulnerability finding. For instance, testers gathered data

relating a vulnerability to a particular attack vector, a given methodology, or type (e.g.,

buffer overflow, authentication issue, etc.).

Example Categorization
A recent high-profile example1 effectively illustrates how a vulnerability is evaluated. A

vehicle manufacturer released a companion smartphone app to interface with the

vehicle, enabling users to control climate settings and view fuel status, among a

myriad of other capabilities. The application itself requested association with a user

account, requiring the user to log in before using the app.

This example vulnerability shows that HTTPS requests made to the backend servers

from the app did not contain any user authentication information. The application

made a request to get battery status (example, fictitious URL):

GET https://host/BatteryStatus.php?VIN=JNFAAZE0U60XXXXX

This request did not contain any session parameters or use Authentication Headers.

The server returns a JSON response. By changing the VIN, an attacker can gain

access to information about any vehicle that sends data to the backend servers,

without authentication.

Further, using the app to turn climate control on and off issues requests with similar

parameters to the URLs:

/orchestration_example/ACRemoteRequest.php?XXX
/orchestration_example/ACRemoteOffRequest.php?XXX

We are looking at a vulnerability that is remote, unauthenticated, low-skill, capable of

controlling or changing a process or system, and automatable.

1 https://www.troyhunt.com/controlling-vehicle-features-of-nissan/

https://host/BatteryStatus.php?VIN=JNFAAZE0U60XXXXX

© 2016 IOActive, Inc. All Rights Reserved [7]

 CATEGORY VALUE

 IMPACT Critical (4.5). Media attention. API servers can affect all
vehicles.

 LIKELIHOOD Critical (5). Almost certain to be exploited. Very low skill
required. Easily discoverable.

 ACCESS VECTOR Network

 ACCESS
COMPLEXITY

 Low

 AUTHENTICATION None

 IMPACT:
CONFIDENTIALITY

 Complete

 IMPACT:
INTEGRITY

 Partial

 IMPACT:
AVAILABILITY

 None

 LABELS Telematics, Web API, App, Insecure By Design

 EXPLOIT
DELIVERY MEDIA

 Web

 TOOLS USED burp

 VULNERABILITY Unauthenticated API

 IMPACT: VEHICLE Secondary system loss of control, multiple vehicles
compromised

 TESTING METHOD Black Box

 TEMPORARY
REMEDIATION

 Easy (0). Disable API immediately.

 REMEDIATION:
DISSEMINATION

 Medium (3). Prod server update to remediate the issue but
a new app required to use new server API.

 REMEDIATION:
COMPLEXITY

 Medium (3). Proper security of web API requires
authentication/session information and CSRF tokens (if a
web interface exists).

 REMEDIATION:
TIMELINE

 Medium (3)

 EXPLOIT
AUTOMATABILITY

 Easy (5)

Table 3 – Vulnerability report table

© 2016 IOActive, Inc. All Rights Reserved [8]

Common Vulnerabilities and Analysis
With this understanding of how we find and classify vulnerabilities we can look at the

raw data. We evaluate the data organized by:

 Type

 Severity

 Attack Vector

 Methodology

 Remediation Difficulty

 Vehicle Impact

Impact
Looking at the impact level across all vulnerabilities, we see that half are Critical or

High impact. This means half of the vulnerabilities result in a compromise of

components, communications, or data that causes complete or partial loss of control

over the system. Business impact, such as regulatory violation fees or negative media

attention, is also factored into the generic Impact score.

Figure 1 - Vulnerabilities by Impact

Likelihood
The second generic vulnerability category is Likelihood. Here we see the largest

classification is Medium, meaning “an expert attacker could exploit the vulnerability

without much difficulty.” The nature of embedded systems security causes a barrier to

entry for attackers. The customized nature of each system makes developing attack

tools difficult. However, in time, more vulnerabilities will shift toward the Critical value

as more vehicle tools are released to the public and embedded security becomes

more accessible to a would-be attacker.

Critical
25%

High
25%Informational

14%

Low
13%

Medium
23%

© 2016 IOActive, Inc. All Rights Reserved [9]

Figure 2 - Vulnerabilities by Likelihood

Overall Risk Level
Combining the previous two data segments gives us an Overall Risk Level, a general

quick look at vulnerability severity. 22% of all vulnerabilities sit in the Critical range.

These are the high-priority "hair on fire" vulnerabilities that are easily discovered and

exploited and can cause major impacts to the system or component. These

vulnerabilities should drive cybersecurity resource allocation and spending.

Figure 3 - Vulnerabilities by Overall Risk Level

Attack Vector
The Attack Vector is a useful data set to compare against the threat model for a given

component or system. The attack surface and trust boundaries should be considered

during the design phase of a system. Every decision that increases the attack surface

Critical
7%

High
21%

Informational
15%

Low
14%

Medium
43%

Low (2-5)
36%

Medium (6-11)
24%

High (12-19)
18%

Critical (20-25)
22%

© 2016 IOActive, Inc. All Rights Reserved [10]

provides new opportunities for an attacker, and should be evaluated accordingly for

risk.

Figure 4 - Vulnerability Attack Vectors

Within our vulnerability set, 39% of vulnerabilities are related to the network. This is a

general category that includes all network traffic, such as Ethernet or web. However,

cellular network and CANBus vulnerabilities appear in separate categories,

representing 16% and 10% (respectively) of the attack vectors for vulnerabilities

found.

The local attack vector requires an attacker to be on the system and obtain privilege

escalation. At first this may seem like an inconsequential or unlikely attack vector, but

after considering the availability of app stores and third-party software modules, this

attack vector is just as significant as network-based attacks.

USB and serial attack vectors require an attacker to be physically present at the

system or otherwise chain an attack. For example, malware on a desktop system may

deploy a payload to a USB storage device, which the unsuspecting user then delivers

to the vehicle. These attack vectors generally coincide with a lower likelihood of

vulnerability.

Top Eight Vulnerabilities
Vulnerabilities related to system design occupy four of the top eight vulnerability types.

Vendor-introduced backdoors, incorrect utilization of the principle of least privilege,

authentication systems requiring hardcoded credentials, and accidental information

disclosure are all products of the system design process.

Cell
Network

16%

Local
17%

Network
39%

Serial
5%

USB
13%

CANBus
10%

© 2016 IOActive, Inc. All Rights Reserved [11]

Figure 5 – Top Eight Vulnerabilities

Engineering problems are the root cause of three of the top eight vulnerability types.

Coding logic errors, such as format strings, buffer overflows, and integer overflows,

account for the most vulnerabilities, with buffer overflows the most common sub-type.

Additionally, web vulnerability implementation problems fall under this category, which

are generally High to Critical risk due to widely available attacker tools and knowledge

base.

Problems in deployment mechanisms and testing cause vulnerabilities in the

Vulnerable Dependency and Backdoor categories. The Vulnerable Dependency

category stems from technical and cultural issues. It is extremely common for

embedded systems to use outdated libraries simply because it is hard enough to get a

system to work in the first place, let alone introduce changes that could cause further

issues by updating a dependency. Further, updating embedded systems is non-trivial,

so a discovered vulnerability in one of these dependencies is likely to be a fruitful

vector for attackers for much longer than in the general realm of IT systems.

Backdoors, information disclosure, and hardcoded credentials also stem from issues

in the deployment process. Production systems should not include developer debug

interfaces or other information that enables attackers. Security-aware deployment

procedures and testing are necessary to verify removal of these interfaces from

production systems.

Backdoor
12%

Buffer Overflow
14%

Coding Logic
Error
17%

Hardcoded Crendentials
13%

Information
Disclosure

18%

Least Privilege
8%

Vulnerable
Dependency

10%

Web Vulnerability
8%

© 2016 IOActive, Inc. All Rights Reserved [12]

Critical Impact Remediation
To create this chart, we took all vulnerabilities with a Critical impact score and made a

"remediation complexity" estimate to evaluate the difficulty of fixing a specific

vulnerability. For example, patching code to remove a buffer overflow is relatively

easy. Interestingly, an overwhelming majority of Critical impact vulnerabilities can be

remediated with relatively simple fixes.

Figure 6 - Critical Vulnerability Remediation Difficulty

However, vulnerabilities stemming from design-level issues occupy the Medium and

High remediation complexity categories. These can be extremely difficult, if not

impossible, to remediate after the design phase, which results in a system that is

"insecure by design" and can never really be remediated. Some design issues do fall

in the Low category as a result of not following industry best practices that are widely

published with how-to guides (e.g., the use of CSRF tokens to prevent web application

CSRF attacks).

Testing Method
The Testing Method chart below is useful when considering how to proceed with a

vulnerability assessment. It includes normalized data on Overall Risk Level for

vulnerabilities, broken down by the testing method used when the vulnerabilities were

discovered. IOActive generally conducts assessments in a black or white box format

wherein the client will either share (white box) or not share (black box) data, code, or

other information.

The usual motivation for a black box test is to evaluate what a "real-world attacker"

would see or do, but in reality the assessment rarely plays out as intended. Real

attackers are not limited in scope or timeline when attacking a system. During such an

assessment, more time is required by researchers to discover and evaluate how to

use a system and develop the harnesses or methodologies required for testing. This

limits the time remaining for the testing itself.

High
8%

Low
77%

Medium
15%

© 2016 IOActive, Inc. All Rights Reserved [13]

Conversely, in a white box test, researchers have more information about the system,

giving them three advantages:

1. Researchers can spend less time figuring out how a system works and

more time discovering vulnerabilities.

2. Researchers are better able to evaluate the impact and likelihood levels for

any vulnerabilities that are discovered.

3. Researchers can provide insight and assistance in areas of the system that

may not be directly attackable but might be accessible in the future or by

chaining another vulnerability. Generally, these insights fall into the

Informational Overall Risk Level.

Figure 7 - Testing Method

In black box testing, most vulnerabilities sit at the Medium Overall Risk Level, and

fewer vulnerabilities are discovered overall. Comparatively, white box testing uncovers

fewer Medium and more Critical and Informational vulnerabilities. The additional

information available in white box testing enables researchers to better assess the

actual risk of a vulnerability. Further, researchers spend less time working to discover

information about the system and how it operates and more time focusing on finding

and evaluating vulnerabilities.

Grey box testing can be similar in methodology to black box, but benefits from the

addition of information that enables testers to focus on critical attack paths or

components, often resulting in the discovery of more Critical or High Overall Risk

Level vulnerabilities. However, this also results in fewer Informational level

vulnerabilities than a white box test, often limiting the additional insights, such as

incorporating industry best practices, that white box testing can offer.

C
ri

ti
c
a
l

H
ig

h

M
e

d
iu

m

L
o

w

In
fo

rm
a

ti
o

n
a

l

C
ri

ti
c
a
l

H
ig

h

M
e

d
iu

m

L
o

w

In
fo

rm
a

ti
o

n
a

l

Black Box White Box

© 2016 IOActive, Inc. All Rights Reserved [14]

In summary: white box testing is the most effective at identifying high priority bugs and

improving the development process.

Impact on Vehicle

Figure 8 - Impact on Vehicle

An important point to consider when reviewing this vulnerability data is the actual

impact on the vehicle or fleet. Starting from the benign, 17% of vulnerabilities

evaluated had zero impact on the vehicle itself. These might be vulnerabilities in

unrelated backend systems or other components that are tangentially connected to

the vehicle system being evaluated.

Attacker-enabling impact (9%) encompasses those vulnerabilities that provide

attackers with additional information or attack chains they can use to gain access or

target another vulnerability. Similarly, indirect impact is a secondary consequence of

an attack against a vehicle. For example, compromise of a telematics backend might

allow an attacker to then communicate with the vehicle and gain an additional direct

attack vector against the vehicle.

Vehicle telematics communications are effected in 24% of vulnerabilities. This might

occur directly on the component, in transit over a cellular or other network, or on the

backend systems that gather and utilize the data.

Attacker Enabling
9%

CANBus Access
27%

ECU
Compromised

8%

ECU Disabled
1%

Indirect
14%

None
17%

Telematics
Communications

24%

© 2016 IOActive, Inc. All Rights Reserved [15]

More significantly, 27% of vulnerabilities can be used to gain CANBus Access. This is

important when considering the increasing body of public research showing that an

attacker on the CANBus can control the vehicle234.

Actual ECU control is gained in 8% of the vulnerabilities IOActive evaluated, while 1%

of vulnerabilities disable the ECU without gaining actual control. Compromised ECUs

may allow the attacker to control all of their normal functionality, add further

functionality, or otherwise result in complete compromise of the vehicle component in

a manner that may be extremely difficult to detect.

Defenses and Effectiveness
As part of the assessment process, IOActive provides recommendations to the

customer for vulnerability remediation. This might include re-working of code,

replacement or removal of a feature or component, the purchase and implementation

of a defensive tool or product, or other techniques depending on the nature and

impact of the vulnerability.

In the assessments analyzed for this research, no defensive products were tested.

This is likely a result of the relative infancy of automotive cybersecurity products, as

well as a general tendency of defensive cybersecurity products to not undergo third-

party testing. Organizations can improve this deficiency by including testing

requirements in any procurement language for such products. This has become

commonplace in other industries, such as the Industrial Control System space, where

manufacturers must deliver security reports alongside products that are to be

integrated into production systems.

Ounce of Prevention
In conducting this research, we evaluated an "Ounce of Prevention" measure to best

determine what techniques, policies, or methodologies might have prevented a

vulnerability from existing in the first place.

Disclaimer: while this aspect of the report was a collaborative effort involving opinions

of multiple researchers, and the results are subjective.

2 http://www.ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf
3 http://opengarages.org/handbook/2014_car_hackers_handbook_compressed.pdf
4 https://www.sans.org/reading-room/whitepapers/internet/developments-car-hacking-36607

© 2016 IOActive, Inc. All Rights Reserved [16]

Figure 9 - An "Ounce of Prevention" Analysis

The largest category in our analysis is Industry Best Practices. An increasing number

of security best practices publications are made available every year. The Auto-

ISAC56, Microsoft, OWASP, ARM, and others publish best-practice documents to help

software and hardware developers to create secure systems. Utilizing this information

could result in up to a 45% decrease in vulnerabilities across the board.

Authentication design may fall under industry best practices, but becomes its own

category due to its prevalence and the more unique nature of some of the

components evaluated. Authentication mechanisms may be difficult to change after a

system is deployed and thus should be thoroughly evaluated during system design.

Similarly, secure coding practices could help to prevent 11% of vulnerabilities. Simple

steps, such as including Microsoft’s “banned.h“ to avoid using insecure coding

patterns like strcpy(), help to improve overall code security (and consequently overall

quality) of any system.

The most difficult category to judge with certainty is Code Review and Testing.

Catching coding logic errors can be extremely difficult, but following modern software

5 http://www.prnewswire.com/news-releases/automotive-industry-collaborates-in-developing-vehicle-
cybersecurity-best-practices-to-address-cybersecurity-challenges-300301805.html
6 http://www.autoalliance.org/index.cfm?objectid=1E518FB0-BEC3-11E5-9500000C296BA163

Authentication
Design

6%

Code Review
and Testing

25%

Deployment
Procedure

6%

Industry Best
Practices

45%

Patch
Management

7%

Secure Coding
Practices

11%

© 2016 IOActive, Inc. All Rights Reserved [17]

development principles such as test-driven development can do wonders for

improving a code base and hardening against unexpected behavior and bugs.

A smaller number of issues stem from poor deployment procedures or patch

management. Shipping a production system with enabled backdoors (a.k.a. "debug

features") is preventable with a proper deployment procedure and verification.

Similarly, shipping products with vulnerable dependencies or a difficult update

mechanism further increases the risk for attack.

In evaluating the past few years of vulnerabilities, the old adage rings truer than ever:

an ounce of prevention is worth a pound of cure. Incorporating industry best practices

and a secure development lifecycle is crucial to avoiding pitfalls that, frankly, have

been a non-issue in other industries for years. Using modern design principles

improves the ability to patch and maintain a codebase, and improves overall code

quality.

Conclusion
The majority of vehicle cybersecurity vulnerabilities are not solvable using “bolt-on”

solutions, instead relying on sound engineering, software development practices, and

cybersecurity best practices. The most effective cybersecurity work occurs during the

planning, design and early implementation phases of products, with the difficulty and

cost of remediation increasing in correlation with product age and complexity.

Future Work
Emerging vehicle technologies, such as V2V and V2I communication components, are

underrepresented in the data thus far. These emerging technologies typically require

self-funded research, and thus are rarely published.

Similarly, the data set does not contain any defensive tools or products. It would be

interesting to perform a similar analysis on the defensive tools present in the current

vehicle cybersecurity market. Adding additional components to the system, even if

they are designed to improve security, always adds complexity, introducing new attack

vectors and possibly new vulnerabilities. In the future we should evaluate these

systems on their own cybersecurity merit, and add their vulnerabilities to this research.

For more information on IOActive Transportation Security research and services,

please visit http://www.ioactive.com/services/air-auto-rail-satcom-ship-transportation-

security.html or contact IOActive at info@ioactive.com.

About IOActive

IOActive is the industry’s only research-driven, high-end information security services firm with a proven history

of better securing our customers through real-world scenarios created by our security experts. Our world-

renowned consulting and research teams deliver a portfolio of specialist security services ranging from

penetration testing and application code assessment to chip reverse engineering across multiple industries.

IOActive is the only security services firm that has a dedicated practice focusing on Smart Cities and the

transportation and technology that connects them. Global 500 companies across every industry continue to

trust IOActive with their most critical and sensitive security issues. Founded in 1998, IOActive is headquartered

in Seattle, US, with global operations through the Americas, EMEA, and Asia Pac regions. Visit

www.ioactive.com for more information. Read the IOActive Labs Research Blog: http://blog.ioactive.com/.

Follow IOActive on Twitter: http://twitter.com/ioactive.

http://www.ioactive.com/services/air-auto-rail-satcom-ship-transportation-security.html
http://www.ioactive.com/services/air-auto-rail-satcom-ship-transportation-security.html
mailto:info@ioactive.com
http://www.ioactive.com/
http://blog.ioactive.com/
http://twitter.com/ioactive

